CHROM, 7294

Note

Dosage de la méthaqualone dans le plasma par chromatographie en phase gazeuse

A. NOIRFALISE

Université de Liège, Faculté de Médecine, Laboratoire de Toxicologie Clinique et Médico-Légale, 153, Bd. de la Constitution, B-4000 Liège (Belgique)

(Reçu le 19 novembre 1973)

La méthaqualone (2-méthyl-3-O-tolyl-4(3H)-quinazolinone), dont les propriétés pharmacocinétiques et cliniques ont fait récemment l'objet d'une étude de synthèse¹, peut être mise en évidence dans les milieux biologiques par spectrofluorimétrie², spectrophotométrie³⁻¹⁰, chromatographie sur couche mince^{4,5,7,9,11-13} ou en phase gazeuse^{4,5,11,14,15}

Dans la présente note, nous rapportons les résultats de la mise au point d'une technique rapide de dosage de la méthaqualone dans le plasma par chromatographie en phase gazeuse.

MATÉRIEL ET MÉTHODE

Technique chromatographique

Nous avons finalement retenu les conditions opératoires données dans le Tableau I.

TABLEAU I CONDITIONS OPÉRATOIRES

Appareil	Varian-Aerograph, Modèle 1400 (Palo Alto, Calif., U.S.A.)
Détecteur	FID
Colonne	métallique, six pieds
Phase stationnaire	SP-2250 3% sur Supelcoport 100-200 mesh*
Températures	, ,
injecteur	225°
colonne	215°
détecteur	220°
Gaz vecteur	azote, 60 ml/min
Enregistrement	déroulement, 50 cm/h
Étalon interne	solution alcoolique de L-7035 * * à 1 μ g/ μ l
Volume injecté	$1 \mu l$

^{*} Fourni par Supelco, Bellefonte, Pa. 16823, U.S.A. (Packard Instrument Benelux); le SP-2250 est une phénylsilicone du même type que l'OV-17.

^{**} L-7035 ou Inicarone (D.C.I.) = isopropyl-2-isonicotinoyl-3-benzofurane mis gracieusement à notre disposition par le Centre de Recherche de Labaz que nous remercions.

NOTES 395

Technique d'extraction

Cinq millilitres de plasma, alcalinisés par addition d'une solution aqueuse d'hydroxyde sodique à 30%, sont agités mécaniquement pendant 3 min en présence de 50 ml de chloroforme; cette opération est répétée deux fois.

Après déshydratation sur sulfate sodique anhydre, les phases chloroformiques alcalines réunies sont évaporées à sec et le résidu est repris par 50 μ l de solution d'étalon interne.

RÉSULTATS

Suivant nos conditions opératoires, la méthaqualone se caractérise par un t_R de l'ordre de 2 min 19 sec tandis que l'étalon interne se caractérise par un t_R de l'ordre de 3 min 38 sec. Les rapports de surface des pics de méthaqualone et de L-7035 répondent à la loi de Lambert-Beer pour des concentrations de méthaqualone comprises entre 0 et 20 $\mu g/\mu l$. La limite de détection, à la sensibilité $16 \cdot 10^{-11}$, est de l'ordre de $0.012 \, \mu g/\mu l$ et la limite de dosage de l'ordre de $0.050 \, \mu g/\mu l$.

Le pourcentage de récupération de la méthode proposée est de 88% (81%-96%) pour des plasmas additionnés, in vitro, de méthaqualone à des taux variant entre 0.50 et 1.50 mg%.

CONCLUSIONS

La technique proposée permet de doser sur 5 ml de plasma, avec une bonne précision pour les besoins cliniques, des concentrations de méthaqualone égales ou supérieures à 0.050 mg%. Cette limite est tout à fait satisfaisante puisqu'il est généralement admis que les taux thérapeutiques sanguins de la méthaqualone sont de l'ordre de 0.500 mg% tandis que les taux toxiques se situent entre 1.000 et 3.000 mg% et les taux mortels au-dessus de 3.000 mg%.

REMERCIEMENTS

Ce travail a pu être réalisé avec la collaboration technique de E. Banneux-Halkin.

BIBLIOGRAPHIE

- 1 S. S. Brown et S. Goenechea, Clin. Pharmacol. Therap., 14 (1973), 3, 314; (144 ref. bibliogr.).
- 2 M. Gaultier, F. Conso Pebay-Peyroula, E. Griffoul et F. Mellerio, J. Eur. Toxicol., 5 (1972) 2, 144.
- 3 Belgamerck, Bruxelles, communication personnelle, 1965.
- 4 E. G. C. Clarke, Isolation and Identification of Drugs, Pharmaceutical Press, London, 1969.
- 5 A. Froslie et B. Schubert, J. Leg. Med., 67 (1970) 342.
- 6 A. Hoole, Bull. Int. Ass. Forensic Toxicol., 5 (1968) 1, 4.
- 7 O. Koumides, Bull. Int. Ass. Forensic Toxicol., 6 (1969) 4, 6.
- 8 A. A. H. Lawson et S. S. Brown, Scot. Med. J., 12 (1967) 63.
- 9 A. C. Maehly et R. Bonnichsen, Deut. Z. Gesamte Gerichtl. Med., 57 (1966) 446.
- 10 A. Noirfalise, Bull. Int. Ass. Forensic Toxicol., 6 (1969) 3, 4.
- 11 J. Bogan, Bull. Int. Ass. Forensic Toxicol., 4 (1967) 3, 4,
- 12 J. H. Goudie et D. Burnett, Clin. Chim. Acta, 35 (1971) 133.
- 13 A. Noirfalise, Acta Pharm. Jugoslav., 20 (1970) 77.
- 14 D. J. Berry, J. Chromatogr., 42 (1969) 39.
- 15 M. Mitchard et M. E. Williams, Proc. Eur. Soc. Study Drug Toxicity, 13 (1972) 110.